
N88:16400

The Use and Generation of Illustrative Examples

in Computer-Based Instructional Systems

William John Sellg
NASA/MSFC

and

James D. Johannes

The University of Alabama In Huntsville

ABSTRACT

Examples are both pervasive and necessary in the teaching of

new material. One of the more common types Is the Illustrative

example, used to clarify and Instantlate general statements. The

use of Illustrative examples In computer-based Instructional

systems to date, when they have been used at all, has been

general ly limited to some form of 'canned' text. This method has
the problem that as the system evolves, the canned supportive

material does not necessari ly follow along. This paper proposes a

method whereby the underlying domain knowledge Is represented
such that Illustrative examples may be generated on demand. This

method has the advantage that the generated example can follow

changes In the domain In addition to allowing automatic
customization of the example to the Individual.

I. Introduction

As the human race continues Its venture into space, the

supportive and operational systems necessary to accomplish this

goal become increasingly more complex. It is becoming ever harder

for an Individual to grasp the overall function of the systems

Involved and thus It Is becoming ever harder to effectively use

these systems. Owing to both the growing complexity and size of

our space effort, the need for efficient training systems I$

becoming critical. Computer based Instructional systems, while
still In various levels of development, hold out hope for Just

such efficiency of training due to their ability to tailor
themselves to individuals' needs and their ability to time-share

among many users [6,8]. In these Instructional systems, examples

will play an important role In Increasing the efficiency of

learning.

Examples have long been used In regular Instructional
materials to facilitate learning In a number of ways. Initial

examples introduce material and pique user Interest, thus

221

motivating the learning experience. Application examples anchor

the learned material In a wider framework, thus Increasing

retention and understanding. Evidential examples and control

examples are used to support or test various Instructional

statements. Final ly, I I lustrative examples and counterexamples

are used to both clarify and define the limits of applicability

of general statements [2]. This paper Is specifically concerned

with the use and generation of these I I lustrative examples,

hereafter referred to as Just 'examples'

Current approaches to the use of examples In computer-based

Instructional systems Involve some form of presuppl led text to

determine what to say. These cover the range from 'canned' text

to templates to feature scripts [1]. Alternatively, the system

may contain an Internal expert to generate an example of a

'better way', as in some coaching systems [9]. The problem with

all of these systems, however, Is that they depend upon someone

deciding ahead of time what an appropriate example Is for some

given concept. In some domains, such as mathematics, this Is

adequate. In other domains, such as spacecraft or computer system

operations, the abi I ity to tailor the example to the user and his

working environment Is potentially more useful. This paper

proposes Just such a method.

This method of example generation uses a knowledge

representation scheme based upon Sowa's conceptual graph theory.

In this scheme there exists what Sowa cal Is a semantic net,

similar to a cross-I inked hierarchy, In which the basic

interrelationships among the primitive concepts in the domain Is

captured. Domain knowledge about higher level concepts and actual

entitles Is represented by conceptual graphs, simi lar to Schank's

conceptual dependency theory representation, but with a

potential ly unlimited set of relations [5,7]. To generate an

example from this domain representation, the concept to be

exempl ified Is also represented as a conceptual graph with

various attributes and parameters. This graph is then joined over

the domain representation to fill In the missing pieces, either

through ful I or partial matching on existing knowledge or

generation based upon domain first principles.

The most appl Icable related research is that of Edwina

Rlssland on constrained example generation (CEG), in which an

example is generated from an examples knowledge base using

prespeclfied constraints. CEG lists three methods of

'generation'; retrieval, modification and construction. In

retrieval and modification, pre-existing examples are used,

either directly or with modification, that have been precompl led

by the system bui Ider. It Is only In the construction phase that

an example is actually generated from domain first principles,

and even here the construction may instead be done by combining

existing examples to create a larger example. The work on CEG is

currently focused only on the retrieval and modification aspects

of this method and has yet to address the construction aspect of

generation from domain first principles [4]. This paper presents

a method which Includes that aspect.

222

2 Methodology

A typical situation where Instructional systems would be

useful in space related operations involves the learning of a

command and control system. Learning these systems is similar to

learning a computer operating system. There are numerous commands

with various effects, possibly different In different contexts,

and during the use of these commands the user must have an

understanding of the overall view of things. Because of this

similarity, and for practical testing reasons, this paper

presents the proposed method In the domain of Instruction about

the UNIX operating system.

Appendix A shows a portion of the semantic net of basic

domain primitive concepts. These form a framework for talking

about types of objects. Note that some of these types, such as

entity and Information, are domain Independent whi le others, such

as command, are domain dependent.

Appendix B shows portions of the set of conceptual graphs

comprising the extensional knowledge about the domain [3] and the

user environment. It Is there that methods would be represented

for obtaining Information about actual flies and for interpreting

that Information, about a directory for example.

The best way to I I lustrate the proposed method Is, of

course, with some examples. In these examples the concept to be

exempl ified is first presented textual ly as might be composed by

an Instructional designer. Next Is presented a conceptual graph

for that concept, followed by a description of the processing

Involved and the resultant exemplifying conceptual graph.

Example 1

"The UNIX Programmer's Manual is kept on-I ine. You can

use the 'man' command to print the manual pages for a system
command."

COMMAND

COMMAND-NAME: man

COMMAND-ARGUMENT: _command-name

This conceptual graph (CG) would be matched on the command

name field to the CG for the 'man' command (refer to Appendix B).

Since no options are specified In the example CG, they would not

be Included in the match result. This resultant CG would specify

that the command argument must be In the Intersection of the set

of manual titles and the set of command names. An entry from that

Intersection would be randomly chosen and Inserted into the

command argument field resulting in the following exemplifying

graph:

COMMAND

COMMAND-NAME: man

COMMAND-ARGUMENT: sort

which an English generator would render as "man sort"

223

Example 2

The previous

compl Icated example
meta-characters.

example was relatively simple. A more
Involves the explanation of the use of shell

"The * can be used in conjunction with ?, as In
match multiple fl lenames."

??b = , to

SET

SET-SIZE: >=2

SET-ELEMENTS:

FILE-NAME

LENGTH: >=3

PATTERN: ??b =

First we match this CG with the FILE-NAME CG in the semantic

net. This sets the length field to 3-14. At this point we can

either match against the user environment or generate fl lenames

directly. If we choose to match against the user environment, we
would call a routine to return all fl lenames in the user's

current directory and attempt to match those against the

requirements. If we matched enough of those fi lenames, we would

return that set. Alternatively, generating the fl lenames would
involve Instantlatlng patterns that met both the length and

pattern constraints. In either case an actor CG for matching
would be Invoked which knew about character patterns and
meta-characters.

A generated result (compressed for brevity) might be

SET

SET-SIZE: 4

SET-ELEMENTS:

FILE-NAME: { aab, 23bso, aabredor, debar }

3. Conclusions and Further Directions

This outlines the concept of system-generated examples and a

method for achieving them. The present work has focused only on

the representational and generational problems. Before generated
examples can be ful ly used In computer-based instructional

systems, some manner of generating English from the resultant

conceptual graph Is also needed. Additionally, It would be

convenient to have a parser generate the Initial conceptual graph

from the English statement of the concept to be exemplified.
However, these are separate and further areas for research. That

examples are useful in regular Instructional materials cannot be

denied. Further work will allow them to benefit computer-based
Instructional systems as well.

224

REFERENCES

1) Blenkowskl, M.A., R.E. Culllngford and M.W. Krueger,

Generating Natural Language Explanations In a Computer-Aided

Design System, Technical Report CS83-1, Laboratory of Computer
Science Research, The University of Connecticut, 1983

2) Mandl, H., W. Schnotz and S. Tergan, On the Function of

Examples in Instructional Texts, Presented at the 1984 AERA

Annual Meeting

3) McGI Iton, H.
McGraw-Hill, 1983

and R. Morgan, Introducing the UNIX System,

4) Rlssland, E.L., Constrained Example Generation, COINS
Technical Report 81-24, University of Massachusetts at Amherst

5) Schank, R.G. and C.J Rleger III, Inference and
Understanding of Natural Language, in Readings

Representation, R.J. Brachman and H.J. Levesque
Kaufman, 1985, pp. 119-139

the Computer

in Knowledge

(eds), Morgan

6) Slnnot,
Artificial

1976

L.T., Generative Computer-Assisted Instruction and

Intelligence, Educational Testing Service, October,

7) Sowa, J.F., Conceptual Structures: Information Processing
Mind and Machine, Addison-Wesley, 1984

In

8) Barr, A. and E.A. Felgenbaum (eds), The Handbook of Artificial

Intelligence, V2, William Kaufman, 1982, pp. 225-8

9) Barr, A. and E.A. Feigenbaum (eds), The Handbook of Artificial

Intelligence, V2, William Kaufman, 1982, pp. 254-60

225

APPENDIX A - Intensional Knowledge

This Is a slmpl Ifled representation showing only the concept

types and not the relations linking the concepts involved. All

relation types in this example are characteristics and are

indicated by Indentation.

ENTITY • (Is a subtype of) UST (the universal subtype)

Includes physical objects as well as abstractions

INFORMATION • UST Anything that can be communicated

FILE-NAME • ENTITY, INFORMATION

LENGTH: 1-14

PATTERN: { valid-characters }

COMMAND-NAME • FILE-NAME

COMMAND-DESCRIPTION • TEXT

COMMAND-OPTION • INFORMATION

OPTION-LETTER
OPTION-DESCRIPTION

OPTION-ARGUMENT

COMMAND • ENTITY
COMMAND-NAME

COMMAND-OPTION
COMMAND-ARGUMENT

COMMAND-DESCRIPTION

The entity used to access a fi

Performs an operation

e

APPENDIX B - Extensional Knowledge

COMMAND

COMMAND-NAME:
LENGTH: 3

PATTERN: man

COMMAND-DESCRIPTION: "finds Information by keywords; prints

selected manual pages"

COMMAND-OPTION: {

OPTION-LETTER: k

-DESCRIPTION: "prints a 1-1 ine synopsis of each
manual section whose I istlng

in the table of contents

contains one of the keywords"

-ARGUMENT: { keywords },

OPTION-LETTER: t
-DESCRIPTION: "forces use of TROFF format"

}
COMMAND-ARGUMENT: { manual-titles }

manual-titles: {at,awk,cat,cc Is,man sort,tal I,wc }

226

